Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Chem Biol ; 30(10): 1191-1210.e20, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37557181

RESUMO

KAT6A, and its paralog KAT6B, are histone lysine acetyltransferases (HAT) that acetylate histone H3K23 and exert an oncogenic role in several tumor types including breast cancer where KAT6A is frequently amplified/overexpressed. However, pharmacologic targeting of KAT6A to achieve therapeutic benefit has been a challenge. Here we describe identification of a highly potent, selective, and orally bioavailable KAT6A/KAT6B inhibitor CTx-648 (PF-9363), derived from a benzisoxazole series, which demonstrates anti-tumor activity in correlation with H3K23Ac inhibition in KAT6A over-expressing breast cancer. Transcriptional and epigenetic profiling studies show reduced RNA Pol II binding and downregulation of genes involved in estrogen signaling, cell cycle, Myc and stem cell pathways associated with CTx-648 anti-tumor activity in ER-positive (ER+) breast cancer. CTx-648 treatment leads to potent tumor growth inhibition in ER+ breast cancer in vivo models, including models refractory to endocrine therapy, highlighting the potential for targeting KAT6A in ER+ breast cancer.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Histonas/metabolismo , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Transdução de Sinais , Linhagem Celular Tumoral
2.
ACS Med Chem Lett ; 11(6): 1175-1184, 2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32550998

RESUMO

Two novel compounds were identified as Naa50 binders/inhibitors using DNA-encoded technology screening. Biophysical and biochemical data as well as cocrystal structures were obtained for both compounds (3a and 4a) to understand their mechanism of action. These data were also used to rationalize the binding affinity differences observed between the two compounds and a MLGP peptide-containing substrate. Cellular target engagement experiments further confirm the Naa50 binding of 4a and demonstrate its selectivity toward related enzymes (Naa10 and Naa60). Additional analogs of inhibitor 4a were also evaluated to study the binding mode observed in the cocrystal structures.

3.
J Med Chem ; 61(3): 650-665, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29211475

RESUMO

A new series of lactam-derived EZH2 inhibitors was designed via ligand-based and physicochemical-property-based strategies to address metabolic stability and thermodynamic solubility issues associated with previous lead compound 1. The new inhibitors incorporated an sp3 hybridized carbon atom at the 7-position of the lactam moiety present in lead compound 1 as a replacement for a dimethylisoxazole group. This transformation enabled optimization of the physicochemical properties and potency compared to compound 1. Analysis of relationships between calculated log D (clogD) values and in vitro metabolic stability and permeability parameters identified a clogD range that afforded an increased probability of achieving favorable ADME data in a single molecule. Compound 23a exhibited the best overlap of potency and pharmaceutical properties as well as robust tumor growth inhibition in vivo and was therefore advanced as a development candidate (PF-06821497). A crystal structure of 23a in complex with the three-protein PRC2 complex enabled understanding of the key structural features required for optimal binding.


Assuntos
Desenho de Fármacos , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Isoquinolinas/farmacologia , Isoquinolinas/farmacocinética , Administração Oral , Disponibilidade Biológica , Linhagem Celular Tumoral , Humanos , Isoquinolinas/administração & dosagem , Isoquinolinas/química , Modelos Moleculares , Conformação Molecular
4.
J Med Chem ; 60(23): 9617-9629, 2017 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-29111717

RESUMO

Tumors use tryptophan-catabolizing enzymes such as indoleamine 2,3-dioxygenase (IDO-1) to induce an immunosuppressive environment. IDO-1 is induced in response to inflammatory stimuli and promotes immune tolerance through effector T-cell anergy and enhanced Treg function. As such, IDO-1 is a nexus for the induction of a key immunosuppressive mechanism and represents an important immunotherapeutic target in oncology. Starting from HTS hit 5, IDO-1 inhibitor 6 (EOS200271/PF-06840003) has been developed. The structure-activity relationship around 6 is described and rationalized using the X-ray crystal structure of 6 bound to human IDO-1, which shows that 6, differently from most of the IDO-1 inhibitors described so far, does not bind to the heme iron atom and has a novel binding mode. Clinical candidate 6 shows good potency in an IDO-1 human whole blood assay and also shows a very favorable ADME profile leading to favorable predicted human pharmacokinetic properties, including a predicted half-life of 16-19 h.


Assuntos
Inibidores Enzimáticos/farmacologia , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Indóis/farmacologia , Succinimidas/farmacologia , Animais , Linhagem Celular , Cristalografia por Raios X , Cães , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacocinética , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/química , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Indóis/química , Indóis/farmacocinética , Macaca fascicularis , Masculino , Camundongos , Simulação de Acoplamento Molecular , Ratos , Relação Estrutura-Atividade , Succinimidas/química , Succinimidas/farmacocinética
6.
J Med Chem ; 59(18): 8306-25, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27512831

RESUMO

A new enhancer of zeste homolog 2 (EZH2) inhibitor series comprising a substituted phenyl ring joined to a dimethylpyridone moiety via an amide linkage has been designed. A preferential amide torsion that improved the binding properties of the compounds was identified for this series via computational analysis. Cyclization of the amide linker resulted in a six-membered lactam analogue, compound 18. This transformation significantly improved the ligand efficiency/potency of the cyclized compound relative to its acyclic analogue. Additional optimization of the lactam-containing EZH2 inhibitors focused on lipophilic efficiency (LipE) improvement, which provided compound 31. Compound 31 displayed improved LipE and on-target potency in both biochemical and cellular readouts relative to compound 18. Inhibitor 31 also displayed robust in vivo antitumor growth activity and dose-dependent de-repression of EZH2 target genes.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Desenho de Fármacos , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Piridonas/química , Piridonas/farmacologia , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Ciclização , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Feminino , Humanos , Isoquinolinas/química , Isoquinolinas/farmacologia , Isoquinolinas/uso terapêutico , Lactamas/química , Lactamas/farmacologia , Camundongos , Camundongos SCID , Modelos Moleculares , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Piridonas/uso terapêutico
7.
Nat Commun ; 7: 11384, 2016 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-27122193

RESUMO

Polycomb repressive complex 2 (PRC2) mediates gene silencing through chromatin reorganization by methylation of histone H3 lysine 27 (H3K27). Overexpression of the complex and point mutations in the individual subunits of PRC2 have been shown to contribute to tumorigenesis. Several inhibitors of the PRC2 activity have shown efficacy in EZH2-mutated lymphomas and are currently in clinical development, although the molecular basis of inhibitor recognition remains unknown. Here we report the crystal structures of the inhibitor-bound wild-type and Y641N PRC2. The structures illuminate an important role played by a stretch of 17 residues in the N-terminal region of EZH2, we call the activation loop, in the stimulation of the enzyme activity, inhibitor recognition and the potential development of the mutation-mediated drug resistance. The work presented here provides new avenues for the design and development of next-generation PRC2 inhibitors through establishment of a structure-based drug design platform.


Assuntos
Antineoplásicos/química , Inibidores Enzimáticos/química , Complexo Repressor Polycomb 2/antagonistas & inibidores , Complexo Repressor Polycomb 2/química , Resistencia a Medicamentos Antineoplásicos , Proteína Potenciadora do Homólogo 2 de Zeste/química , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Humanos , Modelos Moleculares , Mutação , Neoplasias/genética , Neoplasias/metabolismo , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo
8.
Assay Drug Dev Technol ; 13(4): 235-40, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26065559

RESUMO

Conformational remodeling of chromatin in cells is known to alter gene expression. The histone code hypothesis postulates that multiple modifications present on histone tails can regulate gene expression both through direct effects on chromatin compaction as well as through recruitment of unique complexes that signal specific downstream functions. Histone methylation is an important component of the histone code, and the dysregulation of histone methylation in disease makes methyltransferases and demethylases viable targets for drug discovery. We developed a biochemical assay platform, which takes advantage of the fact that protein methyltransferases (PMTs) all utilize the cofactor S-Adenosyl-L-methionine (SAM) as the methyl donor. The platform utilizes the High-throughput Mass Spectrometry (MS) technology to measure SAM and the S-Adenosyl-L-homocysteine product in a label-free manner. The platform has all the advantages of a label-free system coupled with the benefit of substrate agnostic measurements making it an ideal setup for PMT biochemical studies and drug discovery. In addition, MS is ideally suited for detecting multiple modification events within the same substrate. The ability to adjust the detection to monitor the methyl acceptor product allows for real-time measurements of multiple product species simultaneously, a distinct advantage over other commonly used assay formats.


Assuntos
Ensaios Enzimáticos/métodos , Ensaios de Triagem em Larga Escala , Espectrometria de Massas , Proteína-Arginina N-Metiltransferases/análise , Radiometria/métodos , Sítios de Ligação , Humanos , Proteína-Arginina N-Metiltransferases/metabolismo
9.
Bioorg Med Chem Lett ; 25(7): 1532-7, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25746813

RESUMO

A series of novel enhancer of zeste homolog 2 (EZH2) inhibitors was designed based on the chemical structure of the histone methyltransferase (HMT) inhibitor SAH (S-adenosyl-l-homocysteine). These nucleoside-based EZH2 inhibitors blocked the methylation of nucleosomes at H3K27 in biochemical assays employing both WT PRC2 complex as well as a Y641N mutant PRC2 complex. The most potent compound, 27, displayed IC50's against both complexes of 270 nM and 70 nM, respectively. To our knowledge, compound 27 is the most potent SAH-derived inhibitor of the EZH2 PRC2 complex yet identified. This compound also displayed improved potency, lipophilic efficiency (LipE), and selectivity profile against other lysine methyltransferases compared with SAH.


Assuntos
Complexo Repressor Polycomb 2/antagonistas & inibidores , S-Adenosil-Homocisteína/farmacologia , Relação Dose-Resposta a Droga , Desenho de Fármacos , Proteína Potenciadora do Homólogo 2 de Zeste , Humanos , Modelos Moleculares , Estrutura Molecular , S-Adenosil-Homocisteína/síntese química , S-Adenosil-Homocisteína/química , Relação Estrutura-Atividade
10.
Comb Chem High Throughput Screen ; 9(5): 331-7, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16787146

RESUMO

From a perspective of process knowledge and enhancement, the analysis of the results of biological screening should not be limited to the outcome of specific projects, but additionally encompass a process centric view. Summarising outcomes across multiple projects is a powerful tool to gain a greater understanding of biological screening that will also enable optimisation of the strategy for specific projects or target classes. We have analysed a set of 73,651 compounds with reproducible (confirmed) results from 63 high-throughput screening (HTS) campaigns to reveal the underlying trends in the population of active compounds. We have focused on the overall physico-chemical profile of compound populations derived from biological screening since the in vivo activity of drug molecules is the result of physico-chemical and structural properties of the compound.


Assuntos
Técnicas de Química Combinatória , Metodologias Computacionais , Avaliação Pré-Clínica de Medicamentos/métodos , Automação , Bases de Dados Factuais
11.
Anal Biochem ; 351(2): 260-5, 2006 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-16527235

RESUMO

A fluorescence polarization (FP) microplate assay suitable for screening compounds against the ribonuclease H (RNase H) activity of HIV-1 reverse transcriptase has been developed. This homogeneous assay uses a hybrid 18-mer DNA/RNA duplex substrate composed of an RNA oligonucleotide labeled with 6-carboxytetramethyl rhodamine at the 3' end that is annealed to a complementary unlabeled DNA strand. The labeled RNA/DNA duplex demonstrated Michaelis-Menten kinetics with a Km value of 9.6+/-2.8 nM. Substrate cleavage by RNase H to produce small RNA fragments (1-4 mer) resulted in a large change in the measured FP value. This FP assay was amenable to kinetics protocols as well as stopped endpoint measurements. When using the latter for conducting robotics runs, Z' values greater than 0.8 typically were observed. The stopped endpoint FP assay was used successfully in a high-throughput screening campaign to screen 1.8 million compounds for RNase H inhibition.


Assuntos
Polarização de Fluorescência/métodos , Transcriptase Reversa do HIV/antagonistas & inibidores , Ribonuclease H/antagonistas & inibidores , Transferência Ressonante de Energia de Fluorescência , Concentração Inibidora 50 , Cinética , Rodaminas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...